Document Type : Review Article

Authors

1 Professor, Department of physical education and sport science, Tarbiat Modares University, Tehran, Iran.

2 Department of physical education and sport science, Tarbiat Modares University, Tehran, Iran

10.22089/jehs.2024.14222.1061

Abstract

Velocity-based training (VBT) can help all people who participate in resistance training (RT) programs to improve/maintain health and physical fitness levels. VBT is a RT intervention that uses velocity feedback to prescribe and/or manipulate training load. Two new variables are adopted for prescribing the training load in VBT, one is the initial fastest repetition velocity in sets to set the load instead of %1RM, the other is the velocity loss threshold (VL) to terminate the set instead of the traditional fixed repetitions. VBT sessions relatively have lower volume and lower post-exercise fatigue and this reason may encourage people to use it as a training method. Also, VBT devices help coaches to predict optimal load and volume before each training session; so modified training variables resulting in a better adaptation. On the other hand, VBT devices are expensive and the dose-response relationship between velocity loss and neuromuscular adaptation is still not clear.

Keywords

  1. References

    1. Abramowitz, M. K., Hall, C. B., Amodu, A., Sharma, D., Androga, L., & Hawkins, M. (2018). Muscle mass, BMI, and mortality among adults in the United States: A population-based cohort study. PLoS One, 13(4), e0194697. https://doi.org/10.1371/journal.pone.0194697
    2. Andersen, J. L., & Aagaard, P. (2000). Myosin heavy chain IIX overshoot in human skeletal muscle. Muscle Nerve, 23(7), 1095-1104. https://doi.org/10.1002/1097-4598(200007)23:7<1095::aid-mus13>3.0.co;2-o
    3. Argus, C. K., Gill, N. D., Keogh, J. W., & Hopkins, W. G. (2011). Acute effects of verbal feedback on upper-body performance in elite athletes. J Strength Cond Res, 25(12), 3282-3287. https://doi.org/10.1519/JSC.0b013e3182133b8c
    4. Baechle, T. R., & Earle, R. W. (2008). Essentials of strength training and conditioning. Human kinetics.
    5. Balsalobre-Fernández, C., García-Ramos, A., & Jiménez-Reyes, P. (2018). Load–velocity profiling in the military press exercise: Effects of gender and training. International Journal of Sports Science & Coaching, 13(5), 743-750.
    6. Banyard, H. G., Nosaka, K., Sato, K., & Haff, G. G. (2017). Validity of Various Methods for Determining Velocity, Force, and Power in the Back Squat. Int J Sports Physiol Perform, 12(9), 1170-1176. https://doi.org/10.1123/ijspp.2016-0627
    7. Banyard, H. G., Nosaka, K., Vernon, A. D., & Haff, G. G. (2018). The Reliability of Individualized Load-Velocity Profiles. Int J Sports Physiol Perform, 13(6), 763-769. https://doi.org/10.1123/ijspp.2017-0610
    8. Banyard, H. G., Tufano, J. J., Delgado, J., Thompson, S. W., & Nosaka, K. (2019). Comparison of the Effects of Velocity-Based Training Methods and Traditional 1RM-Percent-Based Training Prescription on Acute Kinetic and Kinematic Variables. Int J Sports Physiol Perform, 14(2), 246-255. https://doi.org/10.1123/ijspp.2018-0147
    9. Bottinelli, R., Pellegrino, M. A., Canepari, M., Rossi, R., & Reggiani, C. (1999). Specific contributions of various muscle fibre types to human muscle performance: an in vitro study. J Electromyogr Kinesiol, 9(2), 87-95. https://doi.org/10.1016/s1050-6411(98)00040-6
    10. Cadore, E. L., & Izquierdo, M. (2018). Muscle Power Training: A Hallmark for Muscle Function Retaining in Frail Clinical Setting. J Am Med Dir Assoc, 19(3), 190-192. https://doi.org/10.1016/j.jamda.2017.12.010
    11. Conceição, F., Fernandes, J., Lewis, M., Gonzaléz-Badillo, J. J., & Jimenéz-Reyes, P. (2016). Movement velocity as a measure of exercise intensity in three lower limb exercises. J Sports Sci, 34(12), 1099-1106. https://doi.org/10.1080/02640414.2015.1090010
    12. Cormie, P., McGuigan, M. R., & Newton, R. U. (2010). Adaptations in athletic performance after ballistic power versus strength training. Med Sci Sports Exerc, 42(8), 1582-1598. https://doi.org/10.1249/MSS.0b013e3181d2013a

     

    1. Cunanan, A. J., DeWeese, B. H., Wagle, J. P., Carroll, K. M., Sausaman, R., Hornsby, W. G., 3rd, Haff, G. G., Triplett, N. T., Pierce, K. C., & Stone, M. H. (2018). The General Adaptation Syndrome: A Foundation for the Concept of Periodization. Sports Med, 48(4), 787-797. https://doi.org/10.1007/s40279-017-0855-3
    2. Curran-Everett, D. (2009). Explorations in statistics: confidence intervals. Adv Physiol Educ, 33(2), 87-90. https://doi.org/10.1152/advan.00006.2009
    3. de Hoyo, M., Núñez, F. J., Sañudo, B., Gonzalo-Skok, O., Muñoz-López, A., Romero-Boza, S., Otero-Esquina, C., Sánchez, H., & Nimphius, S. (2021). Predicting Loading Intensity Measuring Velocity in Barbell Hip Thrust Exercise. J Strength Cond Res, 35(8), 2075-2081. https://doi.org/10.1519/jsc.0000000000003159
    4. Distefano, G., & Goodpaster, B. H. (2018). Effects of Exercise and Aging on Skeletal Muscle. Cold Spring Harb Perspect Med, 8(3). https://doi.org/10.1101/cshperspect.a029785
    5. Dorrell, H. F., Smith, M. F., & Gee, T. I. (2020). Comparison of Velocity-Based and Traditional Percentage-Based Loading Methods on Maximal Strength and Power Adaptations. J Strength Cond Res, 34(1), 46-53. https://doi.org/10.1519/jsc.0000000000003089
    6. Feigenbaum, M. S., & Pollock, M. L. (1999). Prescription of resistance training for health and disease. Med Sci Sports Exerc, 31(1), 38-45. https://doi.org/10.1097/00005768-199901000-00008
    7. Galiano, C., Pareja-Blanco, F., Hidalgo de Mora, J., & Sáez de Villarreal, E. (2022). Low-Velocity Loss Induces Similar Strength Gains to Moderate-Velocity Loss During Resistance Training. J Strength Cond Res, 36(2), 340-345. https://doi.org/10.1519/jsc.0000000000003487
    8. García-Ramos, A., Barboza-González, P., Ulloa-Díaz, D., Rodriguez-Perea, A., Martinez-Garcia, D., Guede-Rojas, F., Hinojosa-Riveros, H., Chirosa-Ríos, L. J., Cuevas-Aburto, J., & Janicijevic, D. (2019). Reliability and validity of different methods of estimating the one-repetition maximum during the free-weight prone bench pull exercise. Journal of sports sciences, 37(19), 2205-2212.
    9. García-Ramos, A., Haff, G. G., Jiménez-Reyes, P., & Pérez-Castilla, A. (2018). Assessment of Upper-Body Ballistic Performance Through the Bench Press Throw Exercise: Which Velocity Outcome Provides the Highest Reliability? J Strength Cond Res, 32(10), 2701-2707. https://doi.org/10.1519/jsc.0000000000002616
    10. García-Ramos, A., Haff, G. G., Pestaña-Melero, F. L., Pérez-Castilla, A., Rojas, F. J., Balsalobre-Fernández, C., & Jaric, S. (2018). Feasibility of the 2-Point Method for Determining the 1-Repetition Maximum in the Bench Press Exercise. Int J Sports Physiol Perform, 13(4), 474-481. https://doi.org/10.1123/ijspp.2017-0374
    11. García-Ramos, A., Pestaña-Melero, F. L., Pérez-Castilla, A., Rojas, F. J., & Gregory Haff, G. (2018). Mean Velocity vs. Mean Propulsive Velocity vs. Peak Velocity: Which Variable Determines Bench Press Relative Load With Higher Reliability? J Strength Cond Res, 32(5), 1273-1279. https://doi.org/10.1519/jsc.0000000000001998
    12. González-Badillo, J. J., Rodríguez-Rosell, D., Sánchez-Medina, L., Gorostiaga, E. M., & Pareja-Blanco, F. (2014). Maximal intended velocity training induces greater gains in bench press performance than deliberately slower half-velocity training. Eur J Sport Sci, 14(8), 772-781. https://doi.org/10.1080/17461391.2014.905987
    13. González-Badillo, J. J., & Sánchez-Medina, L. (2010). Movement velocity as a measure of loading intensity in resistance training. Int J Sports Med, 31(5), 347-352. https://doi.org/10.1055/s-0030-1248333
    14. González-Badillo, J. J., Yañez-García, J. M., Mora-Custodio, R., & Rodríguez-Rosell, D. (2017). Velocity Loss as a Variable for Monitoring Resistance Exercise. Int J Sports Med, 38(3), 217-225. https://doi.org/10.1055/s-0042-120324
    15. Hart, P. D., & Buck, D. J. (2019). The effect of resistance training on health-related quality of life in older adults: Systematic review and meta-analysis. Health Promot Perspect, 9(1), 1-12. https://doi.org/10.15171/hpp.2019.01
    16. Held, S., Hecksteden, A., Meyer, T., & Donath, L. (2021). Improved Strength and Recovery After Velocity-Based Training: A Randomized Controlled Trial. Int J Sports Physiol Perform, 16(8), 1185–1193. https://doi.org/10.1123/ijspp.2020-0451
    17. Held, S., Speer, K., Rappelt, L., Wicker, P., & Donath, L. (2022). The effectiveness of traditional vs. velocity-based strength training on explosive and maximal strength performance: A network meta-analysis. Frontiers in physiology, 13, 926972.
    18. Izquierdo, M., González-Badillo, J. J., Häkkinen, K., Ibáñez, J., Kraemer, W. J., Altadill, A., Eslava, J., & Gorostiaga, E. M. (2006). Effect of loading on unintentional lifting velocity declines during single sets of repetitions to failure during upper and lower extremity muscle actions. Int J Sports Med, 27(9), 718-724. https://doi.org/10.1055/s-2005-872825
    19. Izquierdo, M., Ibañez, J., González-Badillo, J. J., Häkkinen, K., Ratamess, N. A., Kraemer, W. J., French, D. N., Eslava, J., Altadill, A., Asiain, X., & Gorostiaga, E. M. (2006). Differential effects of strength training leading to failure versus not to failure on hormonal responses, strength, and muscle power gains. J Appl Physiol (1985), 100(5), 1647-1656. https://doi.org/10.1152/japplphysiol.01400.2005
    20. Jiménez-Alonso, A., García-Ramos, A., Cepero, M., Miras-Moreno, S., Rojas, F. J., & Pérez-Castilla, A. (2022). Velocity Performance Feedback During the Free-Weight Bench Press Testing Procedure: An Effective Strategy to Increase the Reliability and One Repetition Maximum Accuracy Prediction. J Strength Cond Res, 36(4), 1077-1083. https://doi.org/10.1519/jsc.0000000000003609
    21. Jochem, C., Leitzmann, M., Volaklis, K., Aune, D., & Strasser, B. (2019). Association Between Muscular Strength and Mortality in Clinical Populations: A Systematic Review and Meta-Analysis. J Am Med Dir Assoc, 20(10), 1213-1223. https://doi.org/10.1016/j.jamda.2019.05.015
    22. Jovanović, M., & Flanagan, E. P. (2014). Researched applications of velocity based strength training. J Aust Strength Cond, 22(2), 58-69.

     

     

    1. Jukic, I., Castilla, A. P., Ramos, A. G., Van Hooren, B., McGuigan, M. R., & Helms, E. R. (2022). The Acute and Chronic Effects of Implementing Velocity Loss Thresholds During Resistance Training: A Systematic Review, Meta-Analysis, and Critical Evaluation of the Literature. Sports Med. https://doi.org/10.1007/s40279-022-01754-4
    2. Kim, Y., White, T., Wijndaele, K., Westgate, K., Sharp, S. J., Helge, J. W., Wareham, N. J., & Brage, S. (2018). The combination of cardiorespiratory fitness and muscle strength, and mortality risk. Eur J Epidemiol, 33(10), 953-964. https://doi.org/10.1007/s10654-018-0384-x
    3. Kraemer, W. J., & Ratamess, N. A. (2004). Fundamentals of resistance training: progression and exercise prescription. Med Sci Sports Exerc, 36(4), 674-688. https://doi.org/10.1249/01.mss.0000121945.36635.61
    4. Lexell, J., Taylor, C. C., & Sjöström, M. (1988). What is the cause of the ageing atrophy?: Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15-to 83-year-old men. Journal of the neurological sciences, 84(2-3), 275-294.
    5. Liao, K. F., Wang, X. X., Han, M. Y., Li, L. L., Nassis, G. P., & Li, Y. M. (2021). Effects of velocity based training vs. traditional 1RM percentage-based training on improving strength, jump, linear sprint and change of direction speed performance: A Systematic review with meta-analysis. PLoS One, 16(11), e0259790. https://doi.org/10.1371/journal.pone.0259790
    6. Martinez-Canton, M., Gallego-Selles, A., Gelabert-Rebato, M., Martin-Rincon, M., Pareja-Blanco, F., Rodriguez-Rosell, D., Morales-Alamo, D., Sanchis-Moysi, J., Dorado, C., Jose Gonzalez-Badillo, J., & Calbet, J. A. L. (2021). Role of CaMKII and sarcolipin in muscle adaptations to strength training with different levels of fatigue in the set. Scand J Med Sci Sports, 31(1), 91-103. https://doi.org/10.1111/sms.13828
    7. Martínez-Cava, A., Hernández-Belmonte, A., Courel-Ibáñez, J., Morán-Navarro, R., González-Badillo, J. J., & Pallarés, J. G. (2020). Reliability of technologies to measure the barbell velocity: Implications for monitoring resistance training. PLoS One, 15(6), e0232465. https://doi.org/10.1371/journal.pone.0232465
    8. Nagata, A., Doma, K., Yamashita, D., Hasegawa, H., & Mori, S. (2020). The Effect of Augmented Feedback Type and Frequency on Velocity-Based Training-Induced Adaptation and Retention. J Strength Cond Res, 34(11), 3110-3117. https://doi.org/10.1519/jsc.0000000000002514
    9. Newton, R. U., Murphy, A. J., Humphries, B. J., Wilson, G. J., Kraemer, W. J., & Häkkinen, K. (1997). Influence of load and stretch shortening cycle on the kinematics, kinetics and muscle activation that occurs during explosive upper-body movements. Eur J Appl Physiol Occup Physiol, 75(4), 333-342. https://doi.org/10.1007/s004210050169
    10. Nilwik, R., Snijders, T., Leenders, M., Groen, B. B., van Kranenburg, J., Verdijk, L. B., & van Loon, L. J. (2013). The decline in skeletal muscle mass with aging is mainly attributed to a reduction in type II muscle fiber size. Experimental gerontology, 48(5), 492-498.
    11. Orange, S. T., Metcalfe, J. W., Robinson, A., Applegarth, M. J., & Liefeith, A. (2019). Effects of In-Season Velocity- Versus Percentage-Based Training in Academy Rugby League Players. Int J Sports Physiol Perform, 1-8. https://doi.org/10.1123/ijspp.2019-0058
    12. Pareja-Blanco, F., Rodríguez-Rosell, D., Sánchez-Medina, L., Gorostiaga, E. M., & González-Badillo, J. J. (2014). Effect of movement velocity during resistance training on neuromuscular performance. Int J Sports Med, 35(11), 916-924. https://doi.org/10.1055/s-0033-1363985
    13. Pareja-Blanco, F., Rodríguez-Rosell, D., Sánchez-Medina, L., Sanchis-Moysi, J., Dorado, C., Mora-Custodio, R., Yáñez-García, J. M., Morales-Alamo, D., Pérez-Suárez, I., Calbet, J. A. L., & González-Badillo, J. J. (2017). Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand J Med Sci Sports, 27(7), 724-735. https://doi.org/10.1111/sms.12678
    14. Pareja-Blanco, F., Villalba-Fernández, A., Cornejo-Daza, P. J., Sánchez-Valdepeñas, J., & González-Badillo, J. J. (2019). Time course of recovery following resistance exercise with different loading magnitudes and velocity loss in the set. Sports, 7(3), 59.
    15. Pérez-Castilla, A., & García-Ramos, A. (2020). Changes in the Load-Velocity Profile Following Power- and Strength-Oriented Resistance-Training Programs. Int J Sports Physiol Perform, 15(10), 1460-1466. https://doi.org/10.1123/ijspp.2019-0840
    16. Pérez-Castilla, A., García-Ramos, A., Padial, P., Morales-Artacho, A. J., & Feriche, B. (2018). Effect of different velocity loss thresholds during a power-oriented resistance training program on the mechanical capacities of lower-body muscles. J Sports Sci, 36(12), 1331-1339. https://doi.org/10.1080/02640414.2017.1376900
    17. Pérez-Castilla, A., Jiménez-Reyes, P., Haff, G. G., & García-Ramos, A. (2021). Assessment of the loaded squat jump and countermovement jump exercises with a linear velocity transducer: which velocity variable provides the highest reliability? Sports Biomech, 20(2), 247-260. https://doi.org/10.1080/14763141.2018.1540651
    18. Pérez-Castilla, A., Piepoli, A., Delgado-García, G., Garrido-Blanca, G., & García-Ramos, A. (2019). Reliability and Concurrent Validity of Seven Commercially Available Devices for the Assessment of Movement Velocity at Different Intensities During the Bench Press. J Strength Cond Res, 33(5), 1258-1265. https://doi.org/10.1519/jsc.0000000000003118
    19. Pérez-Castilla, A., Suzovic, D., Domanovic, A., Fernandes, J. F. T., & García-Ramos, A. (2021). Validity of Different Velocity-Based Methods and Repetitions-to-Failure Equations for Predicting the 1 Repetition Maximum During 2 Upper-Body Pulling Exercises. J Strength Cond Res, 35(7), 1800-1808. https://doi.org/10.1519/jsc.0000000000003076
    20. Richens, B., & Cleather, D. J. (2014). The relationship between the number of repetitions performed at given intensities is different in endurance and strength trained athletes. Biol Sport, 31(2), 157-161. https://doi.org/10.5604/20831862.1099047
    21. Sánchez-Medina, L., & González-Badillo, J. J. (2011). Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med Sci Sports Exerc, 43(9), 1725-1734. https://doi.org/10.1249/MSS.0b013e318213f880
    22. Sanchez-Medina, L., Perez, C. E., & Gonzalez-Badillo, J. J. (2010). Importance of the propulsive phase in strength assessment. Int J Sports Med, 31(2), 123-129. https://doi.org/10.1055/s-0029-1242815
    23. Schuenke, M. D., Herman, J. R., Gliders, R. M., Hagerman, F. C., Hikida, R. S., Rana, S. R., Ragg, K. E., & Staron, R. S. (2012). Early-phase muscular adaptations in response to slow-speed versus traditional resistance-training regimens. Eur J Appl Physiol, 112(10), 3585-3595. https://doi.org/10.1007/s00421-012-2339-3
    24. Short, K. R., Vittone, J. L., Bigelow, M. L., Proctor, D. N., Coenen-Schimke, J. M., Rys, P., & Nair, K. S. (2005). Changes in myosin heavy chain mRNA and protein expression in human skeletal muscle with age and endurance exercise training. Journal of applied physiology, 99(1), 95-102.
    25. Sjøgaard, G., Christensen, J. R., Justesen, J. B., Murray, M., Dalager, T., Fredslund, G. H., & Søgaard, K. (2016). Exercise is more than medicine: The working age population's well-being and productivity. J Sport Health Sci, 5(2), 159-165. https://doi.org/10.1016/j.jshs.2016.04.004
    26. Smerdu, V., Karsch-Mizrachi, I., Campione, M., Leinwand, L., & Schiaffino, S. (1994). Type IIx myosin heavy chain transcripts are expressed in type IIb fibers of human skeletal muscle. Am J Physiol, 267(6 Pt 1), C1723-1728. https://doi.org/10.1152/ajpcell.1994.267.6.C1723
    27. Stamatakis, E., Lee, I. M., Bennie, J., Freeston, J., Hamer, M., O'Donovan, G., Ding, D., Bauman, A., & Mavros, Y. (2018). Does Strength-Promoting Exercise Confer Unique Health Benefits? A Pooled Analysis of Data on 11 Population Cohorts With All-Cause, Cancer, and Cardiovascular Mortality Endpoints. Am J Epidemiol, 187(5), 1102-1112. https://doi.org/10.1093/aje/kwx345
    28. Strasser, B., Wolters, M., Weyh, C., Krüger, K., & Ticinesi, A. (2021). The effects of lifestyle and diet on gut microbiota composition, inflammation and muscle performance in our aging society. Nutrients, 13(6), 2045.
    29. Tomasevicz, C. L., Hasenkamp, R. M., Ridenour, D. T., & Bach, C. W. (2020). Validity and reliability assessment of 3-D camera-based capture barbell velocity tracking device. J Sci Med Sport, 23(1), 7-14. https://doi.org/10.1016/j.jsams.2019.07.014
    30. Van Cutsem, M., Duchateau, J., & Hainaut, K. (1998). Changes in single motor unit behaviour contribute to the increase in contraction speed after dynamic training in humans. J Physiol, 513 ( Pt 1)(Pt 1), 295-305. https://doi.org/10.1111/j.1469-7793.1998.295by.x
    31. Vandervoort, A. A. (2002). Aging of the human neuromuscular system. Muscle Nerve, 25(1), 17-25. https://doi.org/10.1002/mus.1215
    32. Vernon, A., Joyce, C., & Banyard, H. G. (2020). Readiness to train: return to baseline strength and velocity following strength or power training. International Journal of Sports Science & Coaching, 15(2), 204-211.
    33. Volaklis, K. A., Halle, M., & Meisinger, C. (2015). Muscular strength as a strong predictor of mortality: A narrative review. Eur J Intern Med, 26(5), 303-310. https://doi.org/10.1016/j.ejim.2015.04.013
    34. Wang, Y., & Pessin, J. E. (2013). Mechanisms for fiber-type specificity of skeletal muscle atrophy. Curr Opin Clin Nutr Metab Care, 16(3), 243-250. https://doi.org/10.1097/MCO.0b013e328360272d
    35. Weakley, J., Chalkley, D., Johnston, R., García-Ramos, A., Townshend, A., Dorrell, H., Pearson, M., Morrison, M., & Cole, M. (2020). Criterion Validity, and Interunit and Between-Day Reliability of the FLEX for Measuring Barbell Velocity During Commonly Used Resistance Training Exercises. J Strength Cond Res, 34(6), 1519-1524. https://doi.org/10.1519/jsc.0000000000003592
    36. Weakley, J., Mann, B., Banyard, H., McLaren, S., Scott, T., & Garcia-Ramos, A. (2021). Velocity-based training: From theory to application. Strength & Conditioning Journal, 43(2), 31-49.
    37. Weakley, J., McLaren, S., Ramirez-Lopez, C., García-Ramos, A., Dalton-Barron, N., Banyard, H., Mann, B., Weaving, D., & Jones, B. (2020). Application of velocity loss thresholds during free-weight resistance training: Responses and reproducibility of perceptual, metabolic, and neuromuscular outcomes. J Sports Sci, 38(5), 477-485. https://doi.org/10.1080/02640414.2019.1706831
    38. Weakley, J., McLaren, S., Ramirez-Lopez, C., García-Ramos, A., Dalton-Barron, N., Banyard, H., Mann, B., Weaving, D., & Jones, B. (2020). Application of velocity loss thresholds during free-weight resistance training: Responses and reproducibility of perceptual, metabolic, and neuromuscular outcomes. Journal of Sports Sciences, 38(5), 477-485.
    39. Weakley, J., Ramirez-Lopez, C., McLaren, S., Dalton-Barron, N., Weaving, D., Jones, B., Till, K., & Banyard, H. (2020). The Effects of 10%, 20%, and 30% Velocity Loss Thresholds on Kinetic, Kinematic, and Repetition Characteristics During the Barbell Back Squat. Int J Sports Physiol Perform, 15(2), 180-188. https://doi.org/10.1123/ijspp.2018-1008
    40. Weakley, J., Till, K., Sampson, J., Banyard, H., Leduc, C., Wilson, K., Roe, G., & Jones, B. (2019). The Effects of Augmented Feedback on Sprint, Jump, and Strength Adaptations in Rugby Union Players After a 4-Week Training Program. Int J Sports Physiol Perform, 1205-1211. https://doi.org/10.1123/ijspp.2018-0523
    41. Weakley, J., Wilson, K., Till, K., Banyard, H., Dyson, J., Phibbs, P., Read, D., & Jones, B. (2020). Show Me, Tell Me, Encourage Me: The Effect of Different Forms of Feedback on Resistance Training Performance. J Strength Cond Res, 34(11), 3157-3163. https://doi.org/10.1519/jsc.0000000000002887
    42. Weakley, J., Wilson, K., Till, K., Read, D., Scantlebury, S., Sawczuk, T., Neenan, C., & Jones, B. (2019). Visual kinematic feedback enhances velocity, power, motivation and competitiveness in adolescent female athletes. Journal of Australian strength and Conditioning, 27(3), 16-22.

     

    1. Weakley, J. J. S., Till, K., Read, D. B., Leduc, C., Roe, G. A. B., Phibbs, P. J., Darrall-Jones, J., & Jones, B. (2021). Jump Training in Rugby Union Players: Barbell or Hexagonal Bar? J Strength Cond Res, 35(3), 754-761. https://doi.org/10.1519/jsc.0000000000002742
    2. Weakley, J. J. S., Till, K., Read, D. B., Roe, G. A. B., Darrall-Jones, J., Phibbs, P. J., & Jones, B. (2017). The effects of traditional, superset, and tri-set resistance training structures on perceived intensity and physiological responses. Eur J Appl Physiol, 117(9), 1877-1889. https://doi.org/10.1007/s00421-017-3680-3
    3. Weakley, J. J. S., Wilson, K. M., Till, K., Read, D. B., Darrall-Jones, J., Roe, G. A. B., Phibbs, P. J., & Jones, B. (2019). Visual Feedback Attenuates Mean Concentric Barbell Velocity Loss and Improves Motivation, Competitiveness, and Perceived Workload in Male Adolescent Athletes. J Strength Cond Res, 33(9), 2420-2425. https://doi.org/10.1519/jsc.0000000000002133
    4. Wilson, K. M., de Joux, N. R., Head, J. R., Helton, W. S., Dang, J. S., & Weakley, J. J. (2018). Presenting objective visual performance feedback over multiple sets of resistance exercise improves motivation, competitiveness, and performance. Proceedings of the Human Factors and Ergonomics Society Annual Meeting,
    5. Wilson, K. M., Helton, W. S., de Joux, N. R., Head, J. R., & Weakley, J. J. (2017). Real-time quantitative performance feedback during strength exercise improves motivation, competitiveness, mood, and performance. Proceedings of the Human Factors and Ergonomics Society Annual Meeting,
    6. Woo, J. (2017). Sarcopenia. Clin Geriatr Med, 33(3), 305-314. https://doi.org/10.1016/j.cger.2017.02.003
    7. Zhang, X., Feng, S., Peng, R., & Li, H. (2022). The Role of Velocity-Based Training (VBT) in Enhancing Athletic Performance in Trained Individuals: A Meta-Analysis of Controlled Trials. International journal of environmental research and public health, 19(15), 9252.