Document Type : Review Article
Authors
1 Professor, Department of physical education and sport science, Tarbiat Modares University, Tehran, Iran.
2 Department of physical education and sport science, Tarbiat Modares University, Tehran, Iran
Abstract
Velocity-based training (VBT) can help all people who participate in resistance training (RT) programs to improve/maintain health and physical fitness levels. VBT is a RT intervention that uses velocity feedback to prescribe and/or manipulate training load. Two new variables are adopted for prescribing the training load in VBT, one is the initial fastest repetition velocity in sets to set the load instead of %1RM, the other is the velocity loss threshold (VL) to terminate the set instead of the traditional fixed repetitions. VBT sessions relatively have lower volume and lower post-exercise fatigue and this reason may encourage people to use it as a training method. Also, VBT devices help coaches to predict optimal load and volume before each training session; so modified training variables resulting in a better adaptation. On the other hand, VBT devices are expensive and the dose-response relationship between velocity loss and neuromuscular adaptation is still not clear.
Keywords
References
- Abramowitz, M. K., Hall, C. B., Amodu, A., Sharma, D., Androga, L., & Hawkins, M. (2018). Muscle mass, BMI, and mortality among adults in the United States: A population-based cohort study. PLoS One, 13(4), e0194697. https://doi.org/10.1371/journal.pone.0194697
- Andersen, J. L., & Aagaard, P. (2000). Myosin heavy chain IIX overshoot in human skeletal muscle. Muscle Nerve, 23(7), 1095-1104. https://doi.org/10.1002/1097-4598(200007)23:7<1095::aid-mus13>3.0.co;2-o
- Argus, C. K., Gill, N. D., Keogh, J. W., & Hopkins, W. G. (2011). Acute effects of verbal feedback on upper-body performance in elite athletes. J Strength Cond Res, 25(12), 3282-3287. https://doi.org/10.1519/JSC.0b013e3182133b8c
- Baechle, T. R., & Earle, R. W. (2008). Essentials of strength training and conditioning. Human kinetics.
- Balsalobre-Fernández, C., García-Ramos, A., & Jiménez-Reyes, P. (2018). Load–velocity profiling in the military press exercise: Effects of gender and training. International Journal of Sports Science & Coaching, 13(5), 743-750.
- Banyard, H. G., Nosaka, K., Sato, K., & Haff, G. G. (2017). Validity of Various Methods for Determining Velocity, Force, and Power in the Back Squat. Int J Sports Physiol Perform, 12(9), 1170-1176. https://doi.org/10.1123/ijspp.2016-0627
- Banyard, H. G., Nosaka, K., Vernon, A. D., & Haff, G. G. (2018). The Reliability of Individualized Load-Velocity Profiles. Int J Sports Physiol Perform, 13(6), 763-769. https://doi.org/10.1123/ijspp.2017-0610
- Banyard, H. G., Tufano, J. J., Delgado, J., Thompson, S. W., & Nosaka, K. (2019). Comparison of the Effects of Velocity-Based Training Methods and Traditional 1RM-Percent-Based Training Prescription on Acute Kinetic and Kinematic Variables. Int J Sports Physiol Perform, 14(2), 246-255. https://doi.org/10.1123/ijspp.2018-0147
- Bottinelli, R., Pellegrino, M. A., Canepari, M., Rossi, R., & Reggiani, C. (1999). Specific contributions of various muscle fibre types to human muscle performance: an in vitro study. J Electromyogr Kinesiol, 9(2), 87-95. https://doi.org/10.1016/s1050-6411(98)00040-6
- Cadore, E. L., & Izquierdo, M. (2018). Muscle Power Training: A Hallmark for Muscle Function Retaining in Frail Clinical Setting. J Am Med Dir Assoc, 19(3), 190-192. https://doi.org/10.1016/j.jamda.2017.12.010
- Conceição, F., Fernandes, J., Lewis, M., Gonzaléz-Badillo, J. J., & Jimenéz-Reyes, P. (2016). Movement velocity as a measure of exercise intensity in three lower limb exercises. J Sports Sci, 34(12), 1099-1106. https://doi.org/10.1080/02640414.2015.1090010
- Cormie, P., McGuigan, M. R., & Newton, R. U. (2010). Adaptations in athletic performance after ballistic power versus strength training. Med Sci Sports Exerc, 42(8), 1582-1598. https://doi.org/10.1249/MSS.0b013e3181d2013a
- Cunanan, A. J., DeWeese, B. H., Wagle, J. P., Carroll, K. M., Sausaman, R., Hornsby, W. G., 3rd, Haff, G. G., Triplett, N. T., Pierce, K. C., & Stone, M. H. (2018). The General Adaptation Syndrome: A Foundation for the Concept of Periodization. Sports Med, 48(4), 787-797. https://doi.org/10.1007/s40279-017-0855-3
- Curran-Everett, D. (2009). Explorations in statistics: confidence intervals. Adv Physiol Educ, 33(2), 87-90. https://doi.org/10.1152/advan.00006.2009
- de Hoyo, M., Núñez, F. J., Sañudo, B., Gonzalo-Skok, O., Muñoz-López, A., Romero-Boza, S., Otero-Esquina, C., Sánchez, H., & Nimphius, S. (2021). Predicting Loading Intensity Measuring Velocity in Barbell Hip Thrust Exercise. J Strength Cond Res, 35(8), 2075-2081. https://doi.org/10.1519/jsc.0000000000003159
- Distefano, G., & Goodpaster, B. H. (2018). Effects of Exercise and Aging on Skeletal Muscle. Cold Spring Harb Perspect Med, 8(3). https://doi.org/10.1101/cshperspect.a029785
- Dorrell, H. F., Smith, M. F., & Gee, T. I. (2020). Comparison of Velocity-Based and Traditional Percentage-Based Loading Methods on Maximal Strength and Power Adaptations. J Strength Cond Res, 34(1), 46-53. https://doi.org/10.1519/jsc.0000000000003089
- Feigenbaum, M. S., & Pollock, M. L. (1999). Prescription of resistance training for health and disease. Med Sci Sports Exerc, 31(1), 38-45. https://doi.org/10.1097/00005768-199901000-00008
- Galiano, C., Pareja-Blanco, F., Hidalgo de Mora, J., & Sáez de Villarreal, E. (2022). Low-Velocity Loss Induces Similar Strength Gains to Moderate-Velocity Loss During Resistance Training. J Strength Cond Res, 36(2), 340-345. https://doi.org/10.1519/jsc.0000000000003487
- García-Ramos, A., Barboza-González, P., Ulloa-Díaz, D., Rodriguez-Perea, A., Martinez-Garcia, D., Guede-Rojas, F., Hinojosa-Riveros, H., Chirosa-Ríos, L. J., Cuevas-Aburto, J., & Janicijevic, D. (2019). Reliability and validity of different methods of estimating the one-repetition maximum during the free-weight prone bench pull exercise. Journal of sports sciences, 37(19), 2205-2212.
- García-Ramos, A., Haff, G. G., Jiménez-Reyes, P., & Pérez-Castilla, A. (2018). Assessment of Upper-Body Ballistic Performance Through the Bench Press Throw Exercise: Which Velocity Outcome Provides the Highest Reliability? J Strength Cond Res, 32(10), 2701-2707. https://doi.org/10.1519/jsc.0000000000002616
- García-Ramos, A., Haff, G. G., Pestaña-Melero, F. L., Pérez-Castilla, A., Rojas, F. J., Balsalobre-Fernández, C., & Jaric, S. (2018). Feasibility of the 2-Point Method for Determining the 1-Repetition Maximum in the Bench Press Exercise. Int J Sports Physiol Perform, 13(4), 474-481. https://doi.org/10.1123/ijspp.2017-0374
- García-Ramos, A., Pestaña-Melero, F. L., Pérez-Castilla, A., Rojas, F. J., & Gregory Haff, G. (2018). Mean Velocity vs. Mean Propulsive Velocity vs. Peak Velocity: Which Variable Determines Bench Press Relative Load With Higher Reliability? J Strength Cond Res, 32(5), 1273-1279. https://doi.org/10.1519/jsc.0000000000001998
- González-Badillo, J. J., Rodríguez-Rosell, D., Sánchez-Medina, L., Gorostiaga, E. M., & Pareja-Blanco, F. (2014). Maximal intended velocity training induces greater gains in bench press performance than deliberately slower half-velocity training. Eur J Sport Sci, 14(8), 772-781. https://doi.org/10.1080/17461391.2014.905987
- González-Badillo, J. J., & Sánchez-Medina, L. (2010). Movement velocity as a measure of loading intensity in resistance training. Int J Sports Med, 31(5), 347-352. https://doi.org/10.1055/s-0030-1248333
- González-Badillo, J. J., Yañez-García, J. M., Mora-Custodio, R., & Rodríguez-Rosell, D. (2017). Velocity Loss as a Variable for Monitoring Resistance Exercise. Int J Sports Med, 38(3), 217-225. https://doi.org/10.1055/s-0042-120324
- Hart, P. D., & Buck, D. J. (2019). The effect of resistance training on health-related quality of life in older adults: Systematic review and meta-analysis. Health Promot Perspect, 9(1), 1-12. https://doi.org/10.15171/hpp.2019.01
- Held, S., Hecksteden, A., Meyer, T., & Donath, L. (2021). Improved Strength and Recovery After Velocity-Based Training: A Randomized Controlled Trial. Int J Sports Physiol Perform, 16(8), 1185–1193. https://doi.org/10.1123/ijspp.2020-0451
- Held, S., Speer, K., Rappelt, L., Wicker, P., & Donath, L. (2022). The effectiveness of traditional vs. velocity-based strength training on explosive and maximal strength performance: A network meta-analysis. Frontiers in physiology, 13, 926972.
- Izquierdo, M., González-Badillo, J. J., Häkkinen, K., Ibáñez, J., Kraemer, W. J., Altadill, A., Eslava, J., & Gorostiaga, E. M. (2006). Effect of loading on unintentional lifting velocity declines during single sets of repetitions to failure during upper and lower extremity muscle actions. Int J Sports Med, 27(9), 718-724. https://doi.org/10.1055/s-2005-872825
- Izquierdo, M., Ibañez, J., González-Badillo, J. J., Häkkinen, K., Ratamess, N. A., Kraemer, W. J., French, D. N., Eslava, J., Altadill, A., Asiain, X., & Gorostiaga, E. M. (2006). Differential effects of strength training leading to failure versus not to failure on hormonal responses, strength, and muscle power gains. J Appl Physiol (1985), 100(5), 1647-1656. https://doi.org/10.1152/japplphysiol.01400.2005
- Jiménez-Alonso, A., García-Ramos, A., Cepero, M., Miras-Moreno, S., Rojas, F. J., & Pérez-Castilla, A. (2022). Velocity Performance Feedback During the Free-Weight Bench Press Testing Procedure: An Effective Strategy to Increase the Reliability and One Repetition Maximum Accuracy Prediction. J Strength Cond Res, 36(4), 1077-1083. https://doi.org/10.1519/jsc.0000000000003609
- Jochem, C., Leitzmann, M., Volaklis, K., Aune, D., & Strasser, B. (2019). Association Between Muscular Strength and Mortality in Clinical Populations: A Systematic Review and Meta-Analysis. J Am Med Dir Assoc, 20(10), 1213-1223. https://doi.org/10.1016/j.jamda.2019.05.015
- Jovanović, M., & Flanagan, E. P. (2014). Researched applications of velocity based strength training. J Aust Strength Cond, 22(2), 58-69.
- Jukic, I., Castilla, A. P., Ramos, A. G., Van Hooren, B., McGuigan, M. R., & Helms, E. R. (2022). The Acute and Chronic Effects of Implementing Velocity Loss Thresholds During Resistance Training: A Systematic Review, Meta-Analysis, and Critical Evaluation of the Literature. Sports Med. https://doi.org/10.1007/s40279-022-01754-4
- Kim, Y., White, T., Wijndaele, K., Westgate, K., Sharp, S. J., Helge, J. W., Wareham, N. J., & Brage, S. (2018). The combination of cardiorespiratory fitness and muscle strength, and mortality risk. Eur J Epidemiol, 33(10), 953-964. https://doi.org/10.1007/s10654-018-0384-x
- Kraemer, W. J., & Ratamess, N. A. (2004). Fundamentals of resistance training: progression and exercise prescription. Med Sci Sports Exerc, 36(4), 674-688. https://doi.org/10.1249/01.mss.0000121945.36635.61
- Lexell, J., Taylor, C. C., & Sjöström, M. (1988). What is the cause of the ageing atrophy?: Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15-to 83-year-old men. Journal of the neurological sciences, 84(2-3), 275-294.
- Liao, K. F., Wang, X. X., Han, M. Y., Li, L. L., Nassis, G. P., & Li, Y. M. (2021). Effects of velocity based training vs. traditional 1RM percentage-based training on improving strength, jump, linear sprint and change of direction speed performance: A Systematic review with meta-analysis. PLoS One, 16(11), e0259790. https://doi.org/10.1371/journal.pone.0259790
- Martinez-Canton, M., Gallego-Selles, A., Gelabert-Rebato, M., Martin-Rincon, M., Pareja-Blanco, F., Rodriguez-Rosell, D., Morales-Alamo, D., Sanchis-Moysi, J., Dorado, C., Jose Gonzalez-Badillo, J., & Calbet, J. A. L. (2021). Role of CaMKII and sarcolipin in muscle adaptations to strength training with different levels of fatigue in the set. Scand J Med Sci Sports, 31(1), 91-103. https://doi.org/10.1111/sms.13828
- Martínez-Cava, A., Hernández-Belmonte, A., Courel-Ibáñez, J., Morán-Navarro, R., González-Badillo, J. J., & Pallarés, J. G. (2020). Reliability of technologies to measure the barbell velocity: Implications for monitoring resistance training. PLoS One, 15(6), e0232465. https://doi.org/10.1371/journal.pone.0232465
- Nagata, A., Doma, K., Yamashita, D., Hasegawa, H., & Mori, S. (2020). The Effect of Augmented Feedback Type and Frequency on Velocity-Based Training-Induced Adaptation and Retention. J Strength Cond Res, 34(11), 3110-3117. https://doi.org/10.1519/jsc.0000000000002514
- Newton, R. U., Murphy, A. J., Humphries, B. J., Wilson, G. J., Kraemer, W. J., & Häkkinen, K. (1997). Influence of load and stretch shortening cycle on the kinematics, kinetics and muscle activation that occurs during explosive upper-body movements. Eur J Appl Physiol Occup Physiol, 75(4), 333-342. https://doi.org/10.1007/s004210050169
- Nilwik, R., Snijders, T., Leenders, M., Groen, B. B., van Kranenburg, J., Verdijk, L. B., & van Loon, L. J. (2013). The decline in skeletal muscle mass with aging is mainly attributed to a reduction in type II muscle fiber size. Experimental gerontology, 48(5), 492-498.
- Orange, S. T., Metcalfe, J. W., Robinson, A., Applegarth, M. J., & Liefeith, A. (2019). Effects of In-Season Velocity- Versus Percentage-Based Training in Academy Rugby League Players. Int J Sports Physiol Perform, 1-8. https://doi.org/10.1123/ijspp.2019-0058
- Pareja-Blanco, F., Rodríguez-Rosell, D., Sánchez-Medina, L., Gorostiaga, E. M., & González-Badillo, J. J. (2014). Effect of movement velocity during resistance training on neuromuscular performance. Int J Sports Med, 35(11), 916-924. https://doi.org/10.1055/s-0033-1363985
- Pareja-Blanco, F., Rodríguez-Rosell, D., Sánchez-Medina, L., Sanchis-Moysi, J., Dorado, C., Mora-Custodio, R., Yáñez-García, J. M., Morales-Alamo, D., Pérez-Suárez, I., Calbet, J. A. L., & González-Badillo, J. J. (2017). Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand J Med Sci Sports, 27(7), 724-735. https://doi.org/10.1111/sms.12678
- Pareja-Blanco, F., Villalba-Fernández, A., Cornejo-Daza, P. J., Sánchez-Valdepeñas, J., & González-Badillo, J. J. (2019). Time course of recovery following resistance exercise with different loading magnitudes and velocity loss in the set. Sports, 7(3), 59.
- Pérez-Castilla, A., & García-Ramos, A. (2020). Changes in the Load-Velocity Profile Following Power- and Strength-Oriented Resistance-Training Programs. Int J Sports Physiol Perform, 15(10), 1460-1466. https://doi.org/10.1123/ijspp.2019-0840
- Pérez-Castilla, A., García-Ramos, A., Padial, P., Morales-Artacho, A. J., & Feriche, B. (2018). Effect of different velocity loss thresholds during a power-oriented resistance training program on the mechanical capacities of lower-body muscles. J Sports Sci, 36(12), 1331-1339. https://doi.org/10.1080/02640414.2017.1376900
- Pérez-Castilla, A., Jiménez-Reyes, P., Haff, G. G., & García-Ramos, A. (2021). Assessment of the loaded squat jump and countermovement jump exercises with a linear velocity transducer: which velocity variable provides the highest reliability? Sports Biomech, 20(2), 247-260. https://doi.org/10.1080/14763141.2018.1540651
- Pérez-Castilla, A., Piepoli, A., Delgado-García, G., Garrido-Blanca, G., & García-Ramos, A. (2019). Reliability and Concurrent Validity of Seven Commercially Available Devices for the Assessment of Movement Velocity at Different Intensities During the Bench Press. J Strength Cond Res, 33(5), 1258-1265. https://doi.org/10.1519/jsc.0000000000003118
- Pérez-Castilla, A., Suzovic, D., Domanovic, A., Fernandes, J. F. T., & García-Ramos, A. (2021). Validity of Different Velocity-Based Methods and Repetitions-to-Failure Equations for Predicting the 1 Repetition Maximum During 2 Upper-Body Pulling Exercises. J Strength Cond Res, 35(7), 1800-1808. https://doi.org/10.1519/jsc.0000000000003076
- Richens, B., & Cleather, D. J. (2014). The relationship between the number of repetitions performed at given intensities is different in endurance and strength trained athletes. Biol Sport, 31(2), 157-161. https://doi.org/10.5604/20831862.1099047
- Sánchez-Medina, L., & González-Badillo, J. J. (2011). Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med Sci Sports Exerc, 43(9), 1725-1734. https://doi.org/10.1249/MSS.0b013e318213f880
- Sanchez-Medina, L., Perez, C. E., & Gonzalez-Badillo, J. J. (2010). Importance of the propulsive phase in strength assessment. Int J Sports Med, 31(2), 123-129. https://doi.org/10.1055/s-0029-1242815
- Schuenke, M. D., Herman, J. R., Gliders, R. M., Hagerman, F. C., Hikida, R. S., Rana, S. R., Ragg, K. E., & Staron, R. S. (2012). Early-phase muscular adaptations in response to slow-speed versus traditional resistance-training regimens. Eur J Appl Physiol, 112(10), 3585-3595. https://doi.org/10.1007/s00421-012-2339-3
- Short, K. R., Vittone, J. L., Bigelow, M. L., Proctor, D. N., Coenen-Schimke, J. M., Rys, P., & Nair, K. S. (2005). Changes in myosin heavy chain mRNA and protein expression in human skeletal muscle with age and endurance exercise training. Journal of applied physiology, 99(1), 95-102.
- Sjøgaard, G., Christensen, J. R., Justesen, J. B., Murray, M., Dalager, T., Fredslund, G. H., & Søgaard, K. (2016). Exercise is more than medicine: The working age population's well-being and productivity. J Sport Health Sci, 5(2), 159-165. https://doi.org/10.1016/j.jshs.2016.04.004
- Smerdu, V., Karsch-Mizrachi, I., Campione, M., Leinwand, L., & Schiaffino, S. (1994). Type IIx myosin heavy chain transcripts are expressed in type IIb fibers of human skeletal muscle. Am J Physiol, 267(6 Pt 1), C1723-1728. https://doi.org/10.1152/ajpcell.1994.267.6.C1723
- Stamatakis, E., Lee, I. M., Bennie, J., Freeston, J., Hamer, M., O'Donovan, G., Ding, D., Bauman, A., & Mavros, Y. (2018). Does Strength-Promoting Exercise Confer Unique Health Benefits? A Pooled Analysis of Data on 11 Population Cohorts With All-Cause, Cancer, and Cardiovascular Mortality Endpoints. Am J Epidemiol, 187(5), 1102-1112. https://doi.org/10.1093/aje/kwx345
- Strasser, B., Wolters, M., Weyh, C., Krüger, K., & Ticinesi, A. (2021). The effects of lifestyle and diet on gut microbiota composition, inflammation and muscle performance in our aging society. Nutrients, 13(6), 2045.
- Tomasevicz, C. L., Hasenkamp, R. M., Ridenour, D. T., & Bach, C. W. (2020). Validity and reliability assessment of 3-D camera-based capture barbell velocity tracking device. J Sci Med Sport, 23(1), 7-14. https://doi.org/10.1016/j.jsams.2019.07.014
- Van Cutsem, M., Duchateau, J., & Hainaut, K. (1998). Changes in single motor unit behaviour contribute to the increase in contraction speed after dynamic training in humans. J Physiol, 513 ( Pt 1)(Pt 1), 295-305. https://doi.org/10.1111/j.1469-7793.1998.295by.x
- Vandervoort, A. A. (2002). Aging of the human neuromuscular system. Muscle Nerve, 25(1), 17-25. https://doi.org/10.1002/mus.1215
- Vernon, A., Joyce, C., & Banyard, H. G. (2020). Readiness to train: return to baseline strength and velocity following strength or power training. International Journal of Sports Science & Coaching, 15(2), 204-211.
- Volaklis, K. A., Halle, M., & Meisinger, C. (2015). Muscular strength as a strong predictor of mortality: A narrative review. Eur J Intern Med, 26(5), 303-310. https://doi.org/10.1016/j.ejim.2015.04.013
- Wang, Y., & Pessin, J. E. (2013). Mechanisms for fiber-type specificity of skeletal muscle atrophy. Curr Opin Clin Nutr Metab Care, 16(3), 243-250. https://doi.org/10.1097/MCO.0b013e328360272d
- Weakley, J., Chalkley, D., Johnston, R., García-Ramos, A., Townshend, A., Dorrell, H., Pearson, M., Morrison, M., & Cole, M. (2020). Criterion Validity, and Interunit and Between-Day Reliability of the FLEX for Measuring Barbell Velocity During Commonly Used Resistance Training Exercises. J Strength Cond Res, 34(6), 1519-1524. https://doi.org/10.1519/jsc.0000000000003592
- Weakley, J., Mann, B., Banyard, H., McLaren, S., Scott, T., & Garcia-Ramos, A. (2021). Velocity-based training: From theory to application. Strength & Conditioning Journal, 43(2), 31-49.
- Weakley, J., McLaren, S., Ramirez-Lopez, C., García-Ramos, A., Dalton-Barron, N., Banyard, H., Mann, B., Weaving, D., & Jones, B. (2020). Application of velocity loss thresholds during free-weight resistance training: Responses and reproducibility of perceptual, metabolic, and neuromuscular outcomes. J Sports Sci, 38(5), 477-485. https://doi.org/10.1080/02640414.2019.1706831
- Weakley, J., McLaren, S., Ramirez-Lopez, C., García-Ramos, A., Dalton-Barron, N., Banyard, H., Mann, B., Weaving, D., & Jones, B. (2020). Application of velocity loss thresholds during free-weight resistance training: Responses and reproducibility of perceptual, metabolic, and neuromuscular outcomes. Journal of Sports Sciences, 38(5), 477-485.
- Weakley, J., Ramirez-Lopez, C., McLaren, S., Dalton-Barron, N., Weaving, D., Jones, B., Till, K., & Banyard, H. (2020). The Effects of 10%, 20%, and 30% Velocity Loss Thresholds on Kinetic, Kinematic, and Repetition Characteristics During the Barbell Back Squat. Int J Sports Physiol Perform, 15(2), 180-188. https://doi.org/10.1123/ijspp.2018-1008
- Weakley, J., Till, K., Sampson, J., Banyard, H., Leduc, C., Wilson, K., Roe, G., & Jones, B. (2019). The Effects of Augmented Feedback on Sprint, Jump, and Strength Adaptations in Rugby Union Players After a 4-Week Training Program. Int J Sports Physiol Perform, 1205-1211. https://doi.org/10.1123/ijspp.2018-0523
- Weakley, J., Wilson, K., Till, K., Banyard, H., Dyson, J., Phibbs, P., Read, D., & Jones, B. (2020). Show Me, Tell Me, Encourage Me: The Effect of Different Forms of Feedback on Resistance Training Performance. J Strength Cond Res, 34(11), 3157-3163. https://doi.org/10.1519/jsc.0000000000002887
- Weakley, J., Wilson, K., Till, K., Read, D., Scantlebury, S., Sawczuk, T., Neenan, C., & Jones, B. (2019). Visual kinematic feedback enhances velocity, power, motivation and competitiveness in adolescent female athletes. Journal of Australian strength and Conditioning, 27(3), 16-22.
- Weakley, J. J. S., Till, K., Read, D. B., Leduc, C., Roe, G. A. B., Phibbs, P. J., Darrall-Jones, J., & Jones, B. (2021). Jump Training in Rugby Union Players: Barbell or Hexagonal Bar? J Strength Cond Res, 35(3), 754-761. https://doi.org/10.1519/jsc.0000000000002742
- Weakley, J. J. S., Till, K., Read, D. B., Roe, G. A. B., Darrall-Jones, J., Phibbs, P. J., & Jones, B. (2017). The effects of traditional, superset, and tri-set resistance training structures on perceived intensity and physiological responses. Eur J Appl Physiol, 117(9), 1877-1889. https://doi.org/10.1007/s00421-017-3680-3
- Weakley, J. J. S., Wilson, K. M., Till, K., Read, D. B., Darrall-Jones, J., Roe, G. A. B., Phibbs, P. J., & Jones, B. (2019). Visual Feedback Attenuates Mean Concentric Barbell Velocity Loss and Improves Motivation, Competitiveness, and Perceived Workload in Male Adolescent Athletes. J Strength Cond Res, 33(9), 2420-2425. https://doi.org/10.1519/jsc.0000000000002133
- Wilson, K. M., de Joux, N. R., Head, J. R., Helton, W. S., Dang, J. S., & Weakley, J. J. (2018). Presenting objective visual performance feedback over multiple sets of resistance exercise improves motivation, competitiveness, and performance. Proceedings of the Human Factors and Ergonomics Society Annual Meeting,
- Wilson, K. M., Helton, W. S., de Joux, N. R., Head, J. R., & Weakley, J. J. (2017). Real-time quantitative performance feedback during strength exercise improves motivation, competitiveness, mood, and performance. Proceedings of the Human Factors and Ergonomics Society Annual Meeting,
- Woo, J. (2017). Sarcopenia. Clin Geriatr Med, 33(3), 305-314. https://doi.org/10.1016/j.cger.2017.02.003
- Zhang, X., Feng, S., Peng, R., & Li, H. (2022). The Role of Velocity-Based Training (VBT) in Enhancing Athletic Performance in Trained Individuals: A Meta-Analysis of Controlled Trials. International journal of environmental research and public health, 19(15), 9252.