Document Type : Review Article


1 Professor, Department of physical education and sport science, Tarbiat Modares University, Tehran, Iran.

2 Department of physical education and sport science, Tarbiat Modares University, Tehran, Iran



Velocity-based training (VBT) can help all people who participate in resistance training (RT) programs to improve/maintain health and physical fitness levels. VBT is a RT intervention that uses velocity feedback to prescribe and/or manipulate training load. Two new variables are adopted for prescribing the training load in VBT, one is the initial fastest repetition velocity in sets to set the load instead of %1RM, the other is the velocity loss threshold (VL) to terminate the set instead of the traditional fixed repetitions. VBT sessions relatively have lower volume and lower post-exercise fatigue and this reason may encourage people to use it as a training method. Also, VBT devices help coaches to predict optimal load and volume before each training session; so modified training variables resulting in a better adaptation. On the other hand, VBT devices are expensive and the dose-response relationship between velocity loss and neuromuscular adaptation is still not clear.


  1. References

    1. Abramowitz, M. K., Hall, C. B., Amodu, A., Sharma, D., Androga, L., & Hawkins, M. (2018). Muscle mass, BMI, and mortality among adults in the United States: A population-based cohort study. PLoS One, 13(4), e0194697.
    2. Andersen, J. L., & Aagaard, P. (2000). Myosin heavy chain IIX overshoot in human skeletal muscle. Muscle Nerve, 23(7), 1095-1104.<1095::aid-mus13>;2-o
    3. Argus, C. K., Gill, N. D., Keogh, J. W., & Hopkins, W. G. (2011). Acute effects of verbal feedback on upper-body performance in elite athletes. J Strength Cond Res, 25(12), 3282-3287.
    4. Baechle, T. R., & Earle, R. W. (2008). Essentials of strength training and conditioning. Human kinetics.
    5. Balsalobre-Fernández, C., García-Ramos, A., & Jiménez-Reyes, P. (2018). Load–velocity profiling in the military press exercise: Effects of gender and training. International Journal of Sports Science & Coaching, 13(5), 743-750.
    6. Banyard, H. G., Nosaka, K., Sato, K., & Haff, G. G. (2017). Validity of Various Methods for Determining Velocity, Force, and Power in the Back Squat. Int J Sports Physiol Perform, 12(9), 1170-1176.
    7. Banyard, H. G., Nosaka, K., Vernon, A. D., & Haff, G. G. (2018). The Reliability of Individualized Load-Velocity Profiles. Int J Sports Physiol Perform, 13(6), 763-769.
    8. Banyard, H. G., Tufano, J. J., Delgado, J., Thompson, S. W., & Nosaka, K. (2019). Comparison of the Effects of Velocity-Based Training Methods and Traditional 1RM-Percent-Based Training Prescription on Acute Kinetic and Kinematic Variables. Int J Sports Physiol Perform, 14(2), 246-255.
    9. Bottinelli, R., Pellegrino, M. A., Canepari, M., Rossi, R., & Reggiani, C. (1999). Specific contributions of various muscle fibre types to human muscle performance: an in vitro study. J Electromyogr Kinesiol, 9(2), 87-95.
    10. Cadore, E. L., & Izquierdo, M. (2018). Muscle Power Training: A Hallmark for Muscle Function Retaining in Frail Clinical Setting. J Am Med Dir Assoc, 19(3), 190-192.
    11. Conceição, F., Fernandes, J., Lewis, M., Gonzaléz-Badillo, J. J., & Jimenéz-Reyes, P. (2016). Movement velocity as a measure of exercise intensity in three lower limb exercises. J Sports Sci, 34(12), 1099-1106.
    12. Cormie, P., McGuigan, M. R., & Newton, R. U. (2010). Adaptations in athletic performance after ballistic power versus strength training. Med Sci Sports Exerc, 42(8), 1582-1598.


    1. Cunanan, A. J., DeWeese, B. H., Wagle, J. P., Carroll, K. M., Sausaman, R., Hornsby, W. G., 3rd, Haff, G. G., Triplett, N. T., Pierce, K. C., & Stone, M. H. (2018). The General Adaptation Syndrome: A Foundation for the Concept of Periodization. Sports Med, 48(4), 787-797.
    2. Curran-Everett, D. (2009). Explorations in statistics: confidence intervals. Adv Physiol Educ, 33(2), 87-90.
    3. de Hoyo, M., Núñez, F. J., Sañudo, B., Gonzalo-Skok, O., Muñoz-López, A., Romero-Boza, S., Otero-Esquina, C., Sánchez, H., & Nimphius, S. (2021). Predicting Loading Intensity Measuring Velocity in Barbell Hip Thrust Exercise. J Strength Cond Res, 35(8), 2075-2081.
    4. Distefano, G., & Goodpaster, B. H. (2018). Effects of Exercise and Aging on Skeletal Muscle. Cold Spring Harb Perspect Med, 8(3).
    5. Dorrell, H. F., Smith, M. F., & Gee, T. I. (2020). Comparison of Velocity-Based and Traditional Percentage-Based Loading Methods on Maximal Strength and Power Adaptations. J Strength Cond Res, 34(1), 46-53.
    6. Feigenbaum, M. S., & Pollock, M. L. (1999). Prescription of resistance training for health and disease. Med Sci Sports Exerc, 31(1), 38-45.
    7. Galiano, C., Pareja-Blanco, F., Hidalgo de Mora, J., & Sáez de Villarreal, E. (2022). Low-Velocity Loss Induces Similar Strength Gains to Moderate-Velocity Loss During Resistance Training. J Strength Cond Res, 36(2), 340-345.
    8. García-Ramos, A., Barboza-González, P., Ulloa-Díaz, D., Rodriguez-Perea, A., Martinez-Garcia, D., Guede-Rojas, F., Hinojosa-Riveros, H., Chirosa-Ríos, L. J., Cuevas-Aburto, J., & Janicijevic, D. (2019). Reliability and validity of different methods of estimating the one-repetition maximum during the free-weight prone bench pull exercise. Journal of sports sciences, 37(19), 2205-2212.
    9. García-Ramos, A., Haff, G. G., Jiménez-Reyes, P., & Pérez-Castilla, A. (2018). Assessment of Upper-Body Ballistic Performance Through the Bench Press Throw Exercise: Which Velocity Outcome Provides the Highest Reliability? J Strength Cond Res, 32(10), 2701-2707.
    10. García-Ramos, A., Haff, G. G., Pestaña-Melero, F. L., Pérez-Castilla, A., Rojas, F. J., Balsalobre-Fernández, C., & Jaric, S. (2018). Feasibility of the 2-Point Method for Determining the 1-Repetition Maximum in the Bench Press Exercise. Int J Sports Physiol Perform, 13(4), 474-481.
    11. García-Ramos, A., Pestaña-Melero, F. L., Pérez-Castilla, A., Rojas, F. J., & Gregory Haff, G. (2018). Mean Velocity vs. Mean Propulsive Velocity vs. Peak Velocity: Which Variable Determines Bench Press Relative Load With Higher Reliability? J Strength Cond Res, 32(5), 1273-1279.
    12. González-Badillo, J. J., Rodríguez-Rosell, D., Sánchez-Medina, L., Gorostiaga, E. M., & Pareja-Blanco, F. (2014). Maximal intended velocity training induces greater gains in bench press performance than deliberately slower half-velocity training. Eur J Sport Sci, 14(8), 772-781.
    13. González-Badillo, J. J., & Sánchez-Medina, L. (2010). Movement velocity as a measure of loading intensity in resistance training. Int J Sports Med, 31(5), 347-352.
    14. González-Badillo, J. J., Yañez-García, J. M., Mora-Custodio, R., & Rodríguez-Rosell, D. (2017). Velocity Loss as a Variable for Monitoring Resistance Exercise. Int J Sports Med, 38(3), 217-225.
    15. Hart, P. D., & Buck, D. J. (2019). The effect of resistance training on health-related quality of life in older adults: Systematic review and meta-analysis. Health Promot Perspect, 9(1), 1-12.
    16. Held, S., Hecksteden, A., Meyer, T., & Donath, L. (2021). Improved Strength and Recovery After Velocity-Based Training: A Randomized Controlled Trial. Int J Sports Physiol Perform, 16(8), 1185–1193.
    17. Held, S., Speer, K., Rappelt, L., Wicker, P., & Donath, L. (2022). The effectiveness of traditional vs. velocity-based strength training on explosive and maximal strength performance: A network meta-analysis. Frontiers in physiology, 13, 926972.
    18. Izquierdo, M., González-Badillo, J. J., Häkkinen, K., Ibáñez, J., Kraemer, W. J., Altadill, A., Eslava, J., & Gorostiaga, E. M. (2006). Effect of loading on unintentional lifting velocity declines during single sets of repetitions to failure during upper and lower extremity muscle actions. Int J Sports Med, 27(9), 718-724.
    19. Izquierdo, M., Ibañez, J., González-Badillo, J. J., Häkkinen, K., Ratamess, N. A., Kraemer, W. J., French, D. N., Eslava, J., Altadill, A., Asiain, X., & Gorostiaga, E. M. (2006). Differential effects of strength training leading to failure versus not to failure on hormonal responses, strength, and muscle power gains. J Appl Physiol (1985), 100(5), 1647-1656.
    20. Jiménez-Alonso, A., García-Ramos, A., Cepero, M., Miras-Moreno, S., Rojas, F. J., & Pérez-Castilla, A. (2022). Velocity Performance Feedback During the Free-Weight Bench Press Testing Procedure: An Effective Strategy to Increase the Reliability and One Repetition Maximum Accuracy Prediction. J Strength Cond Res, 36(4), 1077-1083.
    21. Jochem, C., Leitzmann, M., Volaklis, K., Aune, D., & Strasser, B. (2019). Association Between Muscular Strength and Mortality in Clinical Populations: A Systematic Review and Meta-Analysis. J Am Med Dir Assoc, 20(10), 1213-1223.
    22. Jovanović, M., & Flanagan, E. P. (2014). Researched applications of velocity based strength training. J Aust Strength Cond, 22(2), 58-69.



    1. Jukic, I., Castilla, A. P., Ramos, A. G., Van Hooren, B., McGuigan, M. R., & Helms, E. R. (2022). The Acute and Chronic Effects of Implementing Velocity Loss Thresholds During Resistance Training: A Systematic Review, Meta-Analysis, and Critical Evaluation of the Literature. Sports Med.
    2. Kim, Y., White, T., Wijndaele, K., Westgate, K., Sharp, S. J., Helge, J. W., Wareham, N. J., & Brage, S. (2018). The combination of cardiorespiratory fitness and muscle strength, and mortality risk. Eur J Epidemiol, 33(10), 953-964.
    3. Kraemer, W. J., & Ratamess, N. A. (2004). Fundamentals of resistance training: progression and exercise prescription. Med Sci Sports Exerc, 36(4), 674-688.
    4. Lexell, J., Taylor, C. C., & Sjöström, M. (1988). What is the cause of the ageing atrophy?: Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15-to 83-year-old men. Journal of the neurological sciences, 84(2-3), 275-294.
    5. Liao, K. F., Wang, X. X., Han, M. Y., Li, L. L., Nassis, G. P., & Li, Y. M. (2021). Effects of velocity based training vs. traditional 1RM percentage-based training on improving strength, jump, linear sprint and change of direction speed performance: A Systematic review with meta-analysis. PLoS One, 16(11), e0259790.
    6. Martinez-Canton, M., Gallego-Selles, A., Gelabert-Rebato, M., Martin-Rincon, M., Pareja-Blanco, F., Rodriguez-Rosell, D., Morales-Alamo, D., Sanchis-Moysi, J., Dorado, C., Jose Gonzalez-Badillo, J., & Calbet, J. A. L. (2021). Role of CaMKII and sarcolipin in muscle adaptations to strength training with different levels of fatigue in the set. Scand J Med Sci Sports, 31(1), 91-103.
    7. Martínez-Cava, A., Hernández-Belmonte, A., Courel-Ibáñez, J., Morán-Navarro, R., González-Badillo, J. J., & Pallarés, J. G. (2020). Reliability of technologies to measure the barbell velocity: Implications for monitoring resistance training. PLoS One, 15(6), e0232465.
    8. Nagata, A., Doma, K., Yamashita, D., Hasegawa, H., & Mori, S. (2020). The Effect of Augmented Feedback Type and Frequency on Velocity-Based Training-Induced Adaptation and Retention. J Strength Cond Res, 34(11), 3110-3117.
    9. Newton, R. U., Murphy, A. J., Humphries, B. J., Wilson, G. J., Kraemer, W. J., & Häkkinen, K. (1997). Influence of load and stretch shortening cycle on the kinematics, kinetics and muscle activation that occurs during explosive upper-body movements. Eur J Appl Physiol Occup Physiol, 75(4), 333-342.
    10. Nilwik, R., Snijders, T., Leenders, M., Groen, B. B., van Kranenburg, J., Verdijk, L. B., & van Loon, L. J. (2013). The decline in skeletal muscle mass with aging is mainly attributed to a reduction in type II muscle fiber size. Experimental gerontology, 48(5), 492-498.
    11. Orange, S. T., Metcalfe, J. W., Robinson, A., Applegarth, M. J., & Liefeith, A. (2019). Effects of In-Season Velocity- Versus Percentage-Based Training in Academy Rugby League Players. Int J Sports Physiol Perform, 1-8.
    12. Pareja-Blanco, F., Rodríguez-Rosell, D., Sánchez-Medina, L., Gorostiaga, E. M., & González-Badillo, J. J. (2014). Effect of movement velocity during resistance training on neuromuscular performance. Int J Sports Med, 35(11), 916-924.
    13. Pareja-Blanco, F., Rodríguez-Rosell, D., Sánchez-Medina, L., Sanchis-Moysi, J., Dorado, C., Mora-Custodio, R., Yáñez-García, J. M., Morales-Alamo, D., Pérez-Suárez, I., Calbet, J. A. L., & González-Badillo, J. J. (2017). Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand J Med Sci Sports, 27(7), 724-735.
    14. Pareja-Blanco, F., Villalba-Fernández, A., Cornejo-Daza, P. J., Sánchez-Valdepeñas, J., & González-Badillo, J. J. (2019). Time course of recovery following resistance exercise with different loading magnitudes and velocity loss in the set. Sports, 7(3), 59.
    15. Pérez-Castilla, A., & García-Ramos, A. (2020). Changes in the Load-Velocity Profile Following Power- and Strength-Oriented Resistance-Training Programs. Int J Sports Physiol Perform, 15(10), 1460-1466.
    16. Pérez-Castilla, A., García-Ramos, A., Padial, P., Morales-Artacho, A. J., & Feriche, B. (2018). Effect of different velocity loss thresholds during a power-oriented resistance training program on the mechanical capacities of lower-body muscles. J Sports Sci, 36(12), 1331-1339.
    17. Pérez-Castilla, A., Jiménez-Reyes, P., Haff, G. G., & García-Ramos, A. (2021). Assessment of the loaded squat jump and countermovement jump exercises with a linear velocity transducer: which velocity variable provides the highest reliability? Sports Biomech, 20(2), 247-260.
    18. Pérez-Castilla, A., Piepoli, A., Delgado-García, G., Garrido-Blanca, G., & García-Ramos, A. (2019). Reliability and Concurrent Validity of Seven Commercially Available Devices for the Assessment of Movement Velocity at Different Intensities During the Bench Press. J Strength Cond Res, 33(5), 1258-1265.
    19. Pérez-Castilla, A., Suzovic, D., Domanovic, A., Fernandes, J. F. T., & García-Ramos, A. (2021). Validity of Different Velocity-Based Methods and Repetitions-to-Failure Equations for Predicting the 1 Repetition Maximum During 2 Upper-Body Pulling Exercises. J Strength Cond Res, 35(7), 1800-1808.
    20. Richens, B., & Cleather, D. J. (2014). The relationship between the number of repetitions performed at given intensities is different in endurance and strength trained athletes. Biol Sport, 31(2), 157-161.
    21. Sánchez-Medina, L., & González-Badillo, J. J. (2011). Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med Sci Sports Exerc, 43(9), 1725-1734.
    22. Sanchez-Medina, L., Perez, C. E., & Gonzalez-Badillo, J. J. (2010). Importance of the propulsive phase in strength assessment. Int J Sports Med, 31(2), 123-129.
    23. Schuenke, M. D., Herman, J. R., Gliders, R. M., Hagerman, F. C., Hikida, R. S., Rana, S. R., Ragg, K. E., & Staron, R. S. (2012). Early-phase muscular adaptations in response to slow-speed versus traditional resistance-training regimens. Eur J Appl Physiol, 112(10), 3585-3595.
    24. Short, K. R., Vittone, J. L., Bigelow, M. L., Proctor, D. N., Coenen-Schimke, J. M., Rys, P., & Nair, K. S. (2005). Changes in myosin heavy chain mRNA and protein expression in human skeletal muscle with age and endurance exercise training. Journal of applied physiology, 99(1), 95-102.
    25. Sjøgaard, G., Christensen, J. R., Justesen, J. B., Murray, M., Dalager, T., Fredslund, G. H., & Søgaard, K. (2016). Exercise is more than medicine: The working age population's well-being and productivity. J Sport Health Sci, 5(2), 159-165.
    26. Smerdu, V., Karsch-Mizrachi, I., Campione, M., Leinwand, L., & Schiaffino, S. (1994). Type IIx myosin heavy chain transcripts are expressed in type IIb fibers of human skeletal muscle. Am J Physiol, 267(6 Pt 1), C1723-1728.
    27. Stamatakis, E., Lee, I. M., Bennie, J., Freeston, J., Hamer, M., O'Donovan, G., Ding, D., Bauman, A., & Mavros, Y. (2018). Does Strength-Promoting Exercise Confer Unique Health Benefits? A Pooled Analysis of Data on 11 Population Cohorts With All-Cause, Cancer, and Cardiovascular Mortality Endpoints. Am J Epidemiol, 187(5), 1102-1112.
    28. Strasser, B., Wolters, M., Weyh, C., Krüger, K., & Ticinesi, A. (2021). The effects of lifestyle and diet on gut microbiota composition, inflammation and muscle performance in our aging society. Nutrients, 13(6), 2045.
    29. Tomasevicz, C. L., Hasenkamp, R. M., Ridenour, D. T., & Bach, C. W. (2020). Validity and reliability assessment of 3-D camera-based capture barbell velocity tracking device. J Sci Med Sport, 23(1), 7-14.
    30. Van Cutsem, M., Duchateau, J., & Hainaut, K. (1998). Changes in single motor unit behaviour contribute to the increase in contraction speed after dynamic training in humans. J Physiol, 513 ( Pt 1)(Pt 1), 295-305.
    31. Vandervoort, A. A. (2002). Aging of the human neuromuscular system. Muscle Nerve, 25(1), 17-25.
    32. Vernon, A., Joyce, C., & Banyard, H. G. (2020). Readiness to train: return to baseline strength and velocity following strength or power training. International Journal of Sports Science & Coaching, 15(2), 204-211.
    33. Volaklis, K. A., Halle, M., & Meisinger, C. (2015). Muscular strength as a strong predictor of mortality: A narrative review. Eur J Intern Med, 26(5), 303-310.
    34. Wang, Y., & Pessin, J. E. (2013). Mechanisms for fiber-type specificity of skeletal muscle atrophy. Curr Opin Clin Nutr Metab Care, 16(3), 243-250.
    35. Weakley, J., Chalkley, D., Johnston, R., García-Ramos, A., Townshend, A., Dorrell, H., Pearson, M., Morrison, M., & Cole, M. (2020). Criterion Validity, and Interunit and Between-Day Reliability of the FLEX for Measuring Barbell Velocity During Commonly Used Resistance Training Exercises. J Strength Cond Res, 34(6), 1519-1524.
    36. Weakley, J., Mann, B., Banyard, H., McLaren, S., Scott, T., & Garcia-Ramos, A. (2021). Velocity-based training: From theory to application. Strength & Conditioning Journal, 43(2), 31-49.
    37. Weakley, J., McLaren, S., Ramirez-Lopez, C., García-Ramos, A., Dalton-Barron, N., Banyard, H., Mann, B., Weaving, D., & Jones, B. (2020). Application of velocity loss thresholds during free-weight resistance training: Responses and reproducibility of perceptual, metabolic, and neuromuscular outcomes. J Sports Sci, 38(5), 477-485.
    38. Weakley, J., McLaren, S., Ramirez-Lopez, C., García-Ramos, A., Dalton-Barron, N., Banyard, H., Mann, B., Weaving, D., & Jones, B. (2020). Application of velocity loss thresholds during free-weight resistance training: Responses and reproducibility of perceptual, metabolic, and neuromuscular outcomes. Journal of Sports Sciences, 38(5), 477-485.
    39. Weakley, J., Ramirez-Lopez, C., McLaren, S., Dalton-Barron, N., Weaving, D., Jones, B., Till, K., & Banyard, H. (2020). The Effects of 10%, 20%, and 30% Velocity Loss Thresholds on Kinetic, Kinematic, and Repetition Characteristics During the Barbell Back Squat. Int J Sports Physiol Perform, 15(2), 180-188.
    40. Weakley, J., Till, K., Sampson, J., Banyard, H., Leduc, C., Wilson, K., Roe, G., & Jones, B. (2019). The Effects of Augmented Feedback on Sprint, Jump, and Strength Adaptations in Rugby Union Players After a 4-Week Training Program. Int J Sports Physiol Perform, 1205-1211.
    41. Weakley, J., Wilson, K., Till, K., Banyard, H., Dyson, J., Phibbs, P., Read, D., & Jones, B. (2020). Show Me, Tell Me, Encourage Me: The Effect of Different Forms of Feedback on Resistance Training Performance. J Strength Cond Res, 34(11), 3157-3163.
    42. Weakley, J., Wilson, K., Till, K., Read, D., Scantlebury, S., Sawczuk, T., Neenan, C., & Jones, B. (2019). Visual kinematic feedback enhances velocity, power, motivation and competitiveness in adolescent female athletes. Journal of Australian strength and Conditioning, 27(3), 16-22.


    1. Weakley, J. J. S., Till, K., Read, D. B., Leduc, C., Roe, G. A. B., Phibbs, P. J., Darrall-Jones, J., & Jones, B. (2021). Jump Training in Rugby Union Players: Barbell or Hexagonal Bar? J Strength Cond Res, 35(3), 754-761.
    2. Weakley, J. J. S., Till, K., Read, D. B., Roe, G. A. B., Darrall-Jones, J., Phibbs, P. J., & Jones, B. (2017). The effects of traditional, superset, and tri-set resistance training structures on perceived intensity and physiological responses. Eur J Appl Physiol, 117(9), 1877-1889.
    3. Weakley, J. J. S., Wilson, K. M., Till, K., Read, D. B., Darrall-Jones, J., Roe, G. A. B., Phibbs, P. J., & Jones, B. (2019). Visual Feedback Attenuates Mean Concentric Barbell Velocity Loss and Improves Motivation, Competitiveness, and Perceived Workload in Male Adolescent Athletes. J Strength Cond Res, 33(9), 2420-2425.
    4. Wilson, K. M., de Joux, N. R., Head, J. R., Helton, W. S., Dang, J. S., & Weakley, J. J. (2018). Presenting objective visual performance feedback over multiple sets of resistance exercise improves motivation, competitiveness, and performance. Proceedings of the Human Factors and Ergonomics Society Annual Meeting,
    5. Wilson, K. M., Helton, W. S., de Joux, N. R., Head, J. R., & Weakley, J. J. (2017). Real-time quantitative performance feedback during strength exercise improves motivation, competitiveness, mood, and performance. Proceedings of the Human Factors and Ergonomics Society Annual Meeting,
    6. Woo, J. (2017). Sarcopenia. Clin Geriatr Med, 33(3), 305-314.
    7. Zhang, X., Feng, S., Peng, R., & Li, H. (2022). The Role of Velocity-Based Training (VBT) in Enhancing Athletic Performance in Trained Individuals: A Meta-Analysis of Controlled Trials. International journal of environmental research and public health, 19(15), 9252.